На главную
ПОМОЩЬ СТУДЕНТАМ!!!
Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и старых методичек 1978, 1982 и 1983гг.. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников или решение задач из задачников Прокофьева, Чертова, Воробьёва и Волькинштейна или любых других решений по физике или гидравлике, воспользуйтесь сайтом fiziks.ru

Статья по теме: Шахматной компоновки

Область знаний: теплообменники, печи, теплоперенос, паровые котлы, нагревание, горение, топлива, теплообмен

Скачать полный текст

Решение системы (3-8) для шахматной компоновки трубного пучка представлено на рис. 3.2 в виде зависимости Т1я(г/г0опт) для нескольких значений Л0. Для потока внутри труб принят турбулентный режим течения с лв=0,8и ав = 0,2. Из рис. 3.2 следует, что влияние отклонения г от г0 существенно зависит от вида используемых теплоносителей, т. е. от коэффициента А0. При малых и больших Л0, т. е. когда обтекание приближается к одностороннему, критерий т)к-»-1- Максимальное отклонение г от числа /о, равное 10%, которое имеет место при учете поправки на число труб по ходу потока, вызывает изменение т]в лишь на 2% при Л0=1. При Z^IO эффективность теплообмена практически не зависит от Z. Так как изменение Т\Е незначительно, то можно не учитывать влияние числа каналов на гопт и расчет оптимального отношения Rei потоков проводить по (2.56). Аналогичный вывод может быть сделан и для коридорной компоновки трубного пучка.[447, С.51]

Решение системы (3.16) для шахматной компоновки с учетом ограничений (3.17) проведено на ЭВМ. Были использованы данные по CSH, Сфн из нормативов [34, 35]. Получены следующие результаты. По данным для ад оптимальна решетка с минимально допустимым шагом, т. е. Одопт = огмин. Для поперечного относительного шага оптимальное решение отсутствует, так как функция т]Е(аь 0д) при ад=const оказывается не монотонной, в результате чего при oj^3 производная т\'Е терпит разрыв при а\ =[447, С.55]

Допустим, проведена оптимизация шахматной компоновки при (тмин=2,4 и найдены значения ReionT=104 и Zi = 100. На рис. 5.2 этим значениям соответствует точка Bi. Так как она лежит ниже линии Zi=100, то выбор типа трубного пучка сделан правильно. Если бы оказалось, что ReionT=5-ll04 (точка В2), то следовало бы принять коридорный пучок и для него провести оптимизацию.[447, С.77]

Полученные уравнения (3.6) — (3.7) являются общими для всех поверхностей. Для оценки влияния числа каналов по ходу потока необходимо знать зависимости Uzn(Z) и C2H(Z). Рассмотрим трубный пучок, для которого Пы=\ для коридорной компоновки и 77^= 1-J-1/Z для шахматной компоновки. Выражение для поправки Сгя 4—5052 49[447, С.49]

Во-вторых, полученные критерии сравнения могут быть использованы как критерии оптимизации теплообменников при заданной несущей поверхности. Например, в [21, 22] было исследовано спирально-ленточное гофрированное оребрение трубчатой поверхности и были найдены оптимальные решения для поверхности данного типа: высота ореб-рения, число петель в витке. В [7, 23] по максимальному теплосъему и минимальным затратам энергии на прокачку газа, т. е. по максимальному значению энергетического коэффициента, найдено оптимальное отношение скоростей потоков в заданной поверхности теплообмена. Критерии сравнения могут быть использованы для нахождения оптимального пространственного расположения каналов. Так, в [24—26] найдены оптимальные относительные шаги трубных пучков шахматной компоновки при поперечном обтекании потоком газа, причем в [24] расчеты проведены для дымовых газов с учетом золоотложения на поверхности нагрева, а в [25, 26] использовались критериальные уравнения по теплоотдаче и аэродинамике для чистых газов. Отметим, что в [24—26] исследовалось лишь одностороннее наружное обтекание.[447, С.14]

Многообразие методик показывает необходимость создания единой универсальной методики. Естественно, эта методика должна быть основана на уравнениях теплоотдачи и гидроаэродинамики, которые используются при расчете теплообменников, а вычисления критериев сопоставления поверхностей не должны требовать большого объема работ. В этом отношении аналитический метод с использованием отношения критериев является более универсальным, чем графический. Однако аналитический метод реализуется в литературе лишь для простейшего' случая — одностороннего наружного обтекания. Двухстороннее обтекание остается до сих пор неизученным. Причина этого в том, что аналитическое решение для двухстороннего обтекания относительно сложно, так как нахождение сопряженных чисел Re (или скоростей) в широком диапазоне чисел Re при ручном счете весьма трудоемко. В этом случае единственным путем решения задачи является применение ЭВМ. Кроме того, существующие работы по рациональной компоновке гладкотрубных пучков при различных схемах обтекания и сравнение этих схем недостаточно полны, так как не охватывают весь диапазон режимных параметров теплоносителя, и часто основаны на , устаревших формулах по теплоотдаче и аэродинамике; поперечное обтекание исследовано лишь при большом числе труб по ходу потока; сравнение коридорной и шахматной компоновок трубного пучка проведено для фиксированных решеток с определенными значениями относительных шагов. Оптимизация геометрии решетки проведена лишь для одностороннего обтекания трубного пучка шахматной компоновки, а коридорный пучок не рассматривался. Доста-[447, С.15]

Рис. 3.6. Оптимальное пространствен-ное расположение труб в решетке шахматной компоновки по данным различных авторов:[447, С.59]

Из сказанного следует, что нельзя говорить о безусловном преимуществе шахматной компоновки перед коридорной. Существует область значений Re*/, омин, Zj, где целесообразно использовать коридорный пучок.[447, С.79]

Рис. 3.5. Зависимость г\к(а\, 0д) при поперечном обтекании трубного пучка шахматной компоновки:[447, С.57]

Рис. 3.3. Номограмма для нахождения гопт при поперечном обтекании трубного пучка шахматной компоновки[447, С.52]

В целях упрощения нахождения ReJj'J можно положить в (5.15) и (5.18) отношение &в/йщ = 1 (для шахматной компоновки это отношение равно 0,77, для коридорной — 0,81). Это приводит к уменьшению г2/г, примерно на 6 %, уменьшению Л] примерно на 5 % и согласно (5.16) — к незначительному изменению Re^. При 6B/6Hi=l коэффициент А\ находят в явном виде:[447, С.86]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Тарга, Кепе, Диевского, Мещерского и любого другого на заказ. Быстро, качественно, все виды оплат, СМС-оплата.
Вы так же можете заказать решение задач и по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, метрология, ДМ, ТММ и другие.

СПИСОК ЛИТЕРАТУРЫ

Перейти к перечню использованной литературы

На главную