На главную
ПОМОЩЬ СТУДЕНТАМ!!!
Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и старых методичек 1978, 1982 и 1983гг.. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников или решение задач из задачников Прокофьева, Чертова, Воробьёва и Волькинштейна или любых других решений по физике или гидравлике, воспользуйтесь сайтом fiziks.ru

Статья по теме: Эрозионной стойкости

Область знаний: теплообменники, печи, теплоперенос, паровые котлы, нагревание, горение, топлива, теплообмен

Скачать полный текст

Испытание эрозионной стойкости материалов на магнитострикционном приборе привлекательно своей быстротой и возможностью проводить исследования при различных температурах рабочей жидкости. Продолжительность испытания каждого образца обычно ограничивается двумя-тремя часами, а эрозионная стойкость материала характеризуется потерей веса образца за определенное время испытаний. Для испытания требуется -всего несколько десятков кубических сан-26[194, С.26]

Сравнение эрозионной стойкости чугунов и сталей, имеющих одинаковую твердость, показывает, что чугу-ны сопротивляются эрозии хуже, чем стали. Последнее объясняется тем, что чугуны содержат легко разрушающиеся микроскопические включения графита. Как показали исследования характера разрушения, эрозионное разрушение начинается с выкрашивания этих хрупких структурных составляющих. Аустенитные стали сопротивляются эрозии лучше, чем обычные углеродистые стали такой же твердости. Аналогичные данные получил Келлер [Л. 64], сравнивая результаты испытаний различных материалов на эрозионно-ударном стенде. В опытах Келлера было, кроме того, выявлено, что эрозионная стойкость твердых медных сплавов (в 'частно-[194, С.33]

Исследование эрозионной стойкости материалов до последнего времени производилось только экспериментальным путем, причем наиболее надежные данные были получены при исследовании материалов в натурных условиях. Применительно к лопаткам паровых турбин натурные испытания были проведены еще в тридцатых годах [Л. 42]. Однако организация такого эксперимента весьма затруднительна. Поэтому часто используют лабораторные методы, которые весьма эффективны при определении сравнительной эрозионной стойкости различных ма-[194, С.24]

Данные по сравнительной эрозионной стойкости вольфрама, молибдена, нескольких видов титановых сплавов и других материалов, получающих распространение в последнее время, приведены в [Л. 62]. Опыты были проведены на неподвижных образцах, помещенных в сосуд с кольцевым возбудителем колебаний (рис. 22). Результаты испытаний представлены в табл. 5, из рассмотрения которой следует, что из числа исследованных материалов наибольшей эрозионной стойкостью обладают титановый сплав марки 150-А и вольфр'ам. Исследование образцов, подвергнутых испытанию, показывает, что материалы с пределом прочности порядка 35-~кГ/жж2 (никель, латунь, чистый титан) получают пластическую деформацию почти сразу же после начала испытаний. Следовательно, напряжения, возникающие в поверхностном слое материала образца при кавитации, должны быть не менее этой величины. С другой стороны, поскольку разрушение таких материалов, как вольфрам и титановый сплав марки 150-А с пределом прочности 100 кГ/мм2 и выше", идет очень медленно, |ка-витационные напряжения в поверхностном слое, погви-димому, ниже этой величины, . ![194, С.43]

Сопоставляя результаты испытаний эрозионной стойкости различных металлов, проведенных разными способами, можно констатировать следующее. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые стали. Причем аустенитные хромоникелевые стали имеют значительно более высокую эрозионную стойкость, чем перлитные. Низкую эрозионную стойкость имеют чугуны, углеродистые стали, никель и чистый титан. Наиболее низкая эрозионная стойкость зафиксирована у алюминия. В пределах определенных групп материалов (углеродистые стали, хромоникельные аустенитные стали и т. п.) эрозионная стойкость тем выше, чем больше твердость металла.[194, С.46]

При экспериментальном определении эрозионной стойкости; различных материалов установлено, что процессы эрозии (глубина эрозионного износа /э) протекают во времени в соответствии с рис. 8.8. Различают три типичных этапа. На первом этапе тп, так называемом инкубационном периоде, видимых повреждений поверхности нет, потерь массы материала зафиксировать не удается. В ряде работ показано, что собственно эрозии материала предшествует рост микронапряжений, увеличение плотности дислокаций в металле предельного значения 1012—1013 см~', что является признаком усталости материала.[142, С.278]

Многие исследователи пытались найти зависимость эрозионной стойкости материалов от их механических качеств (временное сопротивление, вязкость, предел усталости, отношение предела текучести к пределу прочности, поверхностная твердость и т. п.). Из работ, в которых обсуждается этот вопрос, можно указать, например, на {Л. 43 и 61—66]. Общих зависимостей такого рода установить не удалось, однако подмечено, что с увеличением поверхностной твердости при прочих равных условиях эрозионная стойкость металлов, как правило, растет {Л. 43, 63, 64 и др.]. Это отчетливо видно из рис. 26, где представлены заимствованные из [Л. 43] зависимости эрозионной стойкости различных групп материалов от их твердости, полученные при испытаниях на магнитострикционном аппарате.[194, С.33]

Конструкция такого элемента может быть принята в виде пластины Д (рис. 2.18, в) из материала повышенной эрозионной стойкости с профилированной (рифленой) поверхностью. Пластина имеет продольный паз, посредством которого насаживается на периферийный участок радиальной лопатки. Внутренние поверхности паза и соответствующие поверхности паза лопатки снабжены ответными уступами (выступами) аналогично уступам (выступам) зацепления хвостового соединения сложного типа, причем образующие уступов наклонны к оси вращения ротора. На противоположных сторонах пера лопатки и соответственно внутренних плоскостях образующие уступов наклонены в разные стороны. При монтаже паз пластины разжимается, и фиксация ее на уступах может быть обеспечена в строго определенном положении. Нижние части пластины закрепляются заклепками к телу лопатки (с целью предохранения от самопроизвольного снятия). Уступы несут нагрузку от ЦБС, а их наклон в разные стороны исключает возможность осевого сдвига пластины.[190, С.88]

В книге рассмотрены причины и особенности эрозионного разрушения лопаток паровых турбин, факторы, влияющие на эрозию, и методы предотвращения эрозии. Приведены результаты исследований эрозионной стойкости различных металлов разными способами. Проанализирована аналогия между эрозионными разрушениями деталей при кавитации и при ударах капель по поверхности детали, рассмотрен механизм эрозионного разрушения.[194, С.2]

В значительной степени благодаря попыткам установления взаимосвязи между эрозионной стойкостью и механическими свойствами материала было отмечено и сформулировано подтвердившееся затем представление о зависимости эрозионной стойкости материала от его структуры. Было установлено,, что для получения высокой эрозионной стойкости требуется однородность структуры, отсутствие в ней элементов с пониженной прочностью.[142, С.292]

К такому же выводу пришел Керр 1[Л. 55] в результате сравнения результатов испытаний на магнитострикцион-ном вибраторе и в диффузоре. Л. А. Гликман и Э. М. Райхельсон [Л. 43 и 56] сообщают об аналогичном результате сравнения эрозионной стойкости большого количества различных сталей, чугунов, латуней и бронз по результатам испытаний этих материалов на ударном стенде и магнитострикционном вибраторе. Аналогичную картину можно получить, если сравнить приведенные в [Л. 52] результаты испытаний эрозионной стойкости нескольких металлов на приборе с кольцевым возбудителем колебаний с результатами испытаний тех же материалов другими способами. Таким образом, можно считать установленным правило, согласно которому материалы по своей эрозионной стойкости располагаются практически в одинаковой последовательности независимо от способа испытаний'. Объясняется это общностью природы эрозионного разрушения при ударах капель жидкости и при кавитации в жидкой среде (см. гл. 3). Следует подчеркнуть, что интенсивность, с которой идет эрозионное разрушение при испытаниях разными способами, получается разной. До настоящего времени не найдено универсального метода или критерия, который позволил бы дать однозначную количественную оценку интенсивности эрозии независимо от способа испытаний. Несмотря на это, установленный факт одинакового распределения материалов по кавитационной и эрозионной стойкости независимо от метода исследования весьма важен, поскольку он расширяет методические возможности изучения эрозионной стойкости. Опираясь на них, можно выбирать наиболее удобный и простой для данной конкретной обстановки способ испытаний.[194, С.29]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Тарга, Кепе, Диевского, Мещерского и любого другого на заказ. Быстро, качественно, все виды оплат, СМС-оплата.
Вы так же можете заказать решение задач и по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, метрология, ДМ, ТММ и другие.

СПИСОК ЛИТЕРАТУРЫ

Перейти к перечню использованной литературы

На главную