На главную
ПОМОЩЬ СТУДЕНТАМ!!!
Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и старых методичек 1978, 1982 и 1983гг.. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников или решение задач из задачников Прокофьева, Чертова, Воробьёва и Волькинштейна или любых других решений по физике или гидравлике, воспользуйтесь сайтом fiziks.ru

Статья по теме: Критериальных зависимостей

Область знаний: теплообменники, печи, теплоперенос, паровые котлы, нагревание, горение, топлива, теплообмен

Скачать полный текст

Аналитическая форма критериальных зависимостей Nu= =/(Re; l'/de03; 8/de03) и g06uf=/(Re; l'/de03) позволяет провести экстраполяцию для выбора геометрических параметров рассеченных теплообменных поверхностей, не рассмотренных в настоящей работе, при условии сохранения геометрического подобия формы канала.[463, С.64]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-видимому, связан с минимальными физическими погрешностями, что существенно для теории подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому «молю» гетерогенной системы в силу конечности его размеров и дискретности его компонентов неприменимы точные математические методы. Можно полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее:[288, С.33]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя .предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-видимому, связан с минимальными физическими погрешностями, 'что существенно для теории .подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому «молю» гетерогенной системы в силу конечности его размеров и дискретности его компонентов неприменимы точные математические методы. Можно полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее:[292, С.33]

Вид критериальных зависимостей остается одинаковым для всех геометрически подобных систем, поскольку сохраняют силу исходные дифференциальные уравнения и условия однозначности. Связь между критериями подо-[336, С.148]

Количество переменных находится из анализа критериальных зависимостей, полученных методом теории подобия из дифференциальных уравнений процесса [34], а также из рассмотрения уравнений (111-52) и (111-53). Такой анализ приводит к выводу, что[16, С.163]

Согласно третьей теореме, возможно обобщение полученных критериальных зависимостей на все явления, подобные исследованному.[313, С.323]

Теория подобия позволяет установить закономерности конвективного теплообмена и общий вид критериальных зависимостей (25.21). Однако, как* уже указывалось ранее, теория подобия не дает возможности установить конкретный вид зависимости критерия Нус-сельта от определяющих критериев. Такая зависимость может быть найдена исключительно экспериментальным путем. Опыт показывает, что зависимость между критериями (конечно, в определенных пределах изменения аргумента) обычно может быть представлена в виде степенных функций. Так, для вынужденного потока[313, С.332]

Численное исследование проведено в цилиндрическом реакторе промышленного масштаба. Согласно величинам критериальных зависимостей, в аппарате развивается турбулентный режим конвекции. Система уравнений для осредненных величин турбулентной термоконцентрационной конвекции в цилиндрической системе координат г и Z в терминах функции тока $ и завихренности со имеет вид[293, С.44]

В некоторых случаях, когда поверхность контакта хотя бы приближенно определена, расчет параметров газа и жидкости в аппарате может быть выполнен без применения эмпирических критериальных зависимостей. Основу такого расчета составляют дифференциальные и интегральные уравнения пограничного слоя.[132, С.115]

Однако эти данные нельзя непосредственно перенести на исходные процессы, протекающие в котлоагрегате, так как они справедливы только для модели. Поэтому указанные опытные данные необходимо представить в виде критериальных зависимостей. Применительно к рассматриваемым процессам следует найти значения критериев подобия Нуссельта, Эйлера и Рейнольдса:[316, С.390]

Решение (15-16) может быть использовано с той или иной степенью 'приближения при анализе и расчете процессов радиационно-конвективного теплообмена, а также при его экспериментальных исследованиях для построения обобщенных критериальных зависимостей.[130, С.408]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Тарга, Кепе, Диевского, Мещерского и любого другого на заказ. Быстро, качественно, все виды оплат, СМС-оплата.
Вы так же можете заказать решение задач и по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, метрология, ДМ, ТММ и другие.

СПИСОК ЛИТЕРАТУРЫ

Перейти к перечню использованной литературы

На главную