На главную
ПОМОЩЬ СТУДЕНТАМ!!!
Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и старых методичек 1978, 1982 и 1983гг.. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников или решение задач из задачников Прокофьева, Чертова, Воробьёва и Волькинштейна или любых других решений по физике или гидравлике, воспользуйтесь сайтом fiziks.ru

Статья по теме: Местоположения максимума

Область знаний: теплообменники, печи, теплоперенос, паровые котлы, нагревание, горение, топлива, теплообмен

Скачать полный текст

Рассмотрим полученные данные совместно с кривыми изменения безразмерной температуры по длине факела при установке вертикальной щелевой и турбулентной горелок. Характер изменения температур по оси факела турбулентной горелки Ленгипроинж-проекта и местоположение максимума температур в опытах с различными диаметрами газовыпускных отверстий осталось неизменным (рис. 13). Следовательно, постоянная температура на выходе из топочной камеры при различных диаметрах газовыпускных отверстий обусловлена неизменным распределением температур в топочной камере. Изменение безразмерной температуры по длине факела вертикальной щелевой горелки для разных диаметров и формы газовыпускных отверстий различно (рис. 11, о). При этом переход от круглых газовыпускных отверстий к щели шириной 0,5 мм приводит также к смещению местоположения максимума температуры. Естественно возникает вопрос, не расходятся ли полученные нами экспериментальные данные с результатами исследований [Л. 26, 28] выявившими связь между температурой продуктов горения, покидающих топку, и расположением максимума температур в ней. В этих работах влияние расположения максимума температур на теплообмен в топочной камере рассматривается при неизменной степени черноты факела. В наших же опытах степень черноты факела не могла быть неизменной, так как изменение диаметра и формы газовыпускных отверстий влияет на качество смешения газа с воздухом и, следовательно, на степень светимости факела. Таким образом, в наших опытах изменялось не только температурное поле топки, но и степень черноты факела. Значит, сохранение температуры на выходе из топочной камеры при различных диаметрах и форме газовыпускных отверстий является равновесным результатом двух факторов: степени черноты факела и местоположения максимума температур. Действительно, при одинаковых температурах излучение светящегося пламени более интенсивно, чем несветящегося. Но при сжигании несветящимся пламенем достигается более высокая максимальная температура и максимум температур расположен в непосредственной близости от устья горелки (см. рис. И, а).[416, С.78]

Задача 2.53. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропроизводительностью Z)=13,8 кг/с, работающего на высокосернистом мазуте состава: Ср = 83,0%; Нр=10,4%; S' = 2,8%; Ор = 0,7%; Лр = 0,1%; »* = 3%, если известны температура подогрева мазута гт = 90°С, кпд кот-лоагрегата (брутто) ?/®ра=86,7%, давление перегретого пара/>„.„ = = 1,4 МПа, температура перегретого пара ta_„ = 250°С, температура питательной воды ?пв = 100°С, величина непрерывной продувки Р = 3%, количество теплоты, переданное лучевоспринимающим поверхностям Qn= 17 400 кДж/кг, теоретическая температура горения топлива в топке 0Т = 2100°С, температура газов на выходе из топки в1= 1100°С, условный коэффициент загрязнения С = 0,55, степень черноты топки ат = 0,529 и расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, М=0,44.[309, С.67]

Задача 2.52. Определить Лучевоспринимающую поверхность нагрева топки котельного агрегата паропризводительностью D= 13,9 кг/с, работающего на каменном угле с низшей теплотой сгорания б ? = 25 070 кДж/кг, если известны давление перегретого пара/»пп = 4 МПа, температура перегретого пара /ПП = 450°С, температура питательной воды ГП.В=150°С, величина непрерывной продувки Р—4%, теоретически необходимый объем воздуха F° = 6,64 м3/м3, кпд котлоагрегата (брутто) f/ipa = 87%, температура воздуха в котельной /В = 30°С, температура горячего воздуха 4.в = 390°С, коэффициент избытка воздуха в топке с^= 1,25, присос воздуха в топочной камере Аат = 0,05, теоретическая температура горения топлива в топке 0Т = 2035°С, температура газов на выходе из топки 0!J.= 1080°C, условный коэффициент загрязнения ? = 0,6, степень черноты топки аг = 0,546, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, М=0,45, потери теплоты от химической неполноты сгорания топлива q^=l,Q%, потери теплоты от механической неполноты сгорания топлива 174 = 3% и потери теплоты в окружающую среду <7з = 1 %.[309, С.66]

Задача 2.43. Определить температуру газов на выходе из топки котельного агрегата паропроизводительностью ?>=13,9 кг/с, работающего на подмосковном угле марки Б2 состава: Ср = 28,7%; Нр = 2,2%; SS = 2,7%; Np = 0,6%; OP = 8,6%; Ар = 25,2%; ^=32,0%, если известны температура топлива на входе в топку /Т = 20°С, давление перегретого пара />„.„ = 4 МПа, температура перегретого пара /ПП = 450°С, температура питательной воды /П.В=150СС, величина непрерывной продувки Р=4%, теплоемкость рабочей массы топлива с? = 2,1 кДжДкг'К), кпд котлоагрегата (брутто) 7/^ = 86,8%, теоретическая температура горения топлива в топке 0Т=1631°С, условный коэффициент загрязнения С = 0,6, степень черноты топки о,. = 0,708, лучевосприни-мающая поверхность нагрева Нл = 239 м2, средняя суммарная теплоемкость продуктов сгорания Vcp = &,26 кДж/(кг'К) в интервале температур 0Т — д\, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, Л/=0,45, потери теплоты от механической неполноты сгорания топлива #4=2% и потери теплоты в окружающую среду 95 = 0,9%.[309, С.60]

Задача 2.51. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропроизводительностью Z) = 4,09 кг/с, работающего на природном газе Ставропольского месторождения с низшей теплотой сгорания Ql = 35 621 кДж/м3, если известны давление перегретого пара ра .„ = 4 МПа, температура перегретого пара ?nn = 4250C, температура питательной воды /ПВ = 130°С, величина непрерывной продувки Р=3%, теоретически необходимый объем воздуха V =9,51 м3/м3, кпд котлоаг-регата (брутто) 7/^ = 90%, температура воздуха в котельной fB = 30°C, температура горячего воздуха гг.в = 250°С, коэффициент избытка воздуха в топке 0^=1,15, присос воздуха в топочной камере Аот = 0,05, теоретическая температура горения топлива в топке 0Т = 2040°С, температура газов на выходе из топки 9"^ = = 1000°С, энтальпия продуктов сгорания при 0т^т= = 17500 кДж/м3, условный коэффициент загрязнения ? = 0,65, степень черноты топки вт = 0,554, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, Л/=0,44, потери теплоты от химической неполноты сгорания топлива дъ= 1% и потери теплоты в окружающую среду[309, С.65]

М — расчетный коэффициент, зависящий от местоположения максимума действительной температуры газов X, определяется по формуле[73, С.159]

Для характеристики условий воспламенения и сгорания топлива введено понятие о т-носительного местоположения максимума действительной температуры X. Его определяют как отношение расстояния от пода топки, или, что то же самое,[73, С.66]

Непосредственное влияние п и х на значение фактора ослабления для частиц малых размеров показано на рис. 2-3. Из рисунка наглядно виден экстремальный характер зависимости /Сл. (и)-Штриховой кривой показано изменение местоположения максимума в зависимости от показателя преломления п. Во всей рассматривае-[181, С.50]

Анализ распределения температур по длине светящегося и несветящегося пламени и результаты испытаний показывают, что температура продуктов горения, покидающих топку при светящемся и несветящемся пламени, может быть различной в зависимости от местоположения максимума температуры, нагрузки топочного устройства и доли топочного объема, занятой светящейся частью пламени.[416, С.80]

Наибольшие трудности в период комплексного опробования и наладки обычно связаны с получением заданной температуры перегрева пара. В промышленных и энергетических котлах чаще всего применяются пароперегреватели конвективного типа, в которых тепло от продуктов горения в основном передается конвекцией. Для таких пароперегревателей температура перегрева пара резко зависит от количества и температуры продуктов горения на входе в перегреватель. Температура продуктов горения на выходе из топочной камеры при переводе на газовое топливо, как было показано в § 8, зависит от светимости факела, местоположения максимума температур, степени черноты топки и теоретической температуры. В зависимости от изменения этих параметров температура на выходе из топки может как понижаться, так и повышаться при переходе на газообразное топливо. Количество продуктов горения при переходе со слоевого сжигания твердого топлива на газообразное, как правило, заметно снижается.[416, С.156]

где ат — степень черноты топки; М — коэффициент, характеризующий влияние местоположения максимума температуры на суммарный теплообмен (при сжигании суспензии, как и в работе [2], М = 0,445).[398, С.47]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Тарга, Кепе, Диевского, Мещерского и любого другого на заказ. Быстро, качественно, все виды оплат, СМС-оплата.
Вы так же можете заказать решение задач и по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, метрология, ДМ, ТММ и другие.

СПИСОК ЛИТЕРАТУРЫ

Перейти к перечню использованной литературы

На главную