На главную
ПОМОЩЬ СТУДЕНТАМ!!!
Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и старых методичек 1978, 1982 и 1983гг.. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников или решение задач из задачников Прокофьева, Чертова, Воробьёва и Волькинштейна или любых других решений по физике или гидравлике, воспользуйтесь сайтом fiziks.ru

Статья по теме: Эрозионного разрушения

Область знаний: теплообменники, печи, теплоперенос, паровые котлы, нагревание, горение, топлива, теплообмен

Скачать полный текст

Развитие эрозионного разрушения, начавшееся с дислокацией, приводит к появлению лунок, которые продолжают развиваться в глубину, а перегородки между ними утончаются. Возникает характерная для ударно-эрозионного разрушения «иглообразная» структура поверхности металла (рис. 7-5). В этот период интенсивность эрозионного разрушения несколько снижается вследствие демпфирующего влияния жидкости или пара, находящихся во впадинах, и уменьшения площади контакта капли с металлом при попадании ее на остроконечный выступ. Дальнейшее развитие разрушения происходит за счет утончения и выкрашивания иглообразных выступов, а также за счет вовлечения в эрозию новых слоев металла. При малых скоростях соударения и значительных размерах капель более существенную роль в эрозии лопаток начинают, по-видимому, играть кавитационные процессы. Последовательные стадии разрушения оказываются аналогичными отмеченным выше.[124, С.145]

С целью уменьшения эрозионного разрушения лопаток турбин используется метод разрушения пленок и крупных капель на мелкие частицы влаги дополнительным потоком пара. В турбинах завода «Замех» (ПНР) и фирмы АЕ1 (Англия) уже применяется подача пара через щели •выходных кромок полых направляющих лопаток для распыла и подсушки влаги за выходной кромкой (рис. 8-31, а).. Подаваемый дополнительный пар испаряет пленку, текущую по поверхности лопаток.[124, С.183]

Электрохимическая теория эрозионного разрушения в ее наиболее чистом виде объясняет эрозионный износ непрерывно протекающими химическими и электрохимическими процессами, вызывающими коррозию. Разрушение кавитационных пузырей якобы только ускоряет эти процессы, вызывая повышение температуры и давления. Роль потока с этой точки зрения сводится лишь к удалению продуктов коррозии. Защитников такой точки зрения становится немного (Л. 96 и 97], поскольку взгляд на химические процессы как на основную причину эрозионных разрушений не подтверждается. В этой связи следует указать, что эрозии подвергаются такие химически пассивные материалы, как агат, бетон, золото и др. (Л. 85]. Известны примеры очень интенсивной эрозии, когда сквозное эрозионное разрушение металлической пластинки высокоскоростной струей воды происходит за несколько секунд {Л. 47] или сильная эрозия возникает с нескольких ударов крупных капель (Л. 48, 79 и др.]. При столь малом времени эрозионного разрушения бессмысленно говорить о преобладающей роли коррозии. Исследовав более тридцати различных материалов в морской воде, авторы [Л. 43 и 98] пришли к выводу, что скорость эрозионного разрушения при кавитации превосходит скорость коррозионного разрушения в среднем более чем на четыре порядка. При кавитации в неагрессивных жидкостях химические процессы только сопровождают основной механизм эрозионного воздействия, подготовляя деталь к последующему более легкому повреждению, и тем самым ускоряют процесс •58[194, С.58]

Первая попытка объяснить механизм эрозионного разрушения при кавитации была сделана Куком и Пар-сонсом [Л. 86]. Причиной эрозионного разрушения они считали непосредственные удары жидкости при быстром захлопывании кавитационных пузырьков. Предполагалось, что удар происходит по твердому телу, помещенному внутри кавитационного пузыря. Однако такая модель не имеет реального смысла, так как фактически пузырек располагается на разрушаемой поверхности или вблизи ее, т. е. гидравлический удар должен бы происходить при полном смыкании пузырька. Но формула Кука неприменима для этого случая, так как при R -v 0 она дает бесконечное значение давления.[194, С.55]

В книге рассмотрены причины и особенности эрозионного разрушения лопаток паровых турбин, факторы, влияющие на эрозию, и методы предотвращения эрозии. Приведены результаты исследований эрозионной стойкости различных металлов разными способами. Проанализирована аналогия между эрозионными разрушениями деталей при кавитации и при ударах капель по поверхности детали, рассмотрен механизм эрозионного разрушения.[194, С.2]

Таким образом, нет принципиальной разницы между механизмом эрозионного разрушения при больших и при малых или умеренных скоростях соударения капель с твердой поверхностью. В том и другом случае разрушения происходят от гидравлических ударов по поверхности детали. Только при больших скоростях соударения сила удара капли настолько велика, что повреждение происходит с одного удара, и размер повреждения соизмерим с диаметром ударяющей капли. А при малых или умеренных скоростях соударения каждый гидравлический удар, возникающий при несимметричном смыкании кавитационного пузырька у поверхности детали, воздействует на микроскопически малый участок поверхности, поэтому заметное эрозионное разрушение возникает не сразу, а только после мнргочисленных ударов.[194, С.65]

Выдвинутое М. Корнфельдом и Л. Я. Суворовым объяснение механизма эрозионного разрушения при кавитации получает все более широкую известность, признание и дополнительные подтверждения в трудах как советских, так и иностранных ученых (см. [Л. 4, 47, 49, 76, 81, 98, 105, 106 и др.]). В статье [Л. 105], например, указывается, что струйку, входящую внутрь пузырька и разрушающую поверхность образца прямым контактом, удалось обнаружить и наблюдать на опытах, и что действие этой струйки согласуется с теоретическими расчетами. По теоретическим данным |[Л. 105] скорость струйки, ударяющей по поверхности тела, может достигать 1 000 м/сек. Прямые измерения деформации пузырьков срывной кавитации за круглым профилем, обтекаемым со скоростью 17 м/сек, показали [Л. 76], что скорости перемещения поверхности пузырь-62[194, С.62]

Близкий характер разрушений поверхности при капельной эрозии и кавитации послужил основанием гипотезы о ведущей роли кавитационных явлений в ходе эрозионного разрушения лопаток паровых турбин каплями конденсата. Предполагается, что при малых скоростях и больших диаметрах капель преобладает кави-тационный механизм разрушения, так как иначе трудно объяснить причины разрушения материалов повторяющимися ударами капель при скоростях 10—20 м/с. При больших скоростях соударения (несколько сот метров в секунду) сила удара капли настолько велика, что повреждение происходит при одном ударе и размер повреждения соизмерим с диаметром ударяющей капли'.[142, С.281]

Как видно из изложенного, в основу методики расчета турбин на эрозию Л, И. Дехтярев положил упрощенные представления о капельном ударе. Он не вдается в тонкости механизма эрозионного разрушения ори капельном ударе, которые будут рассмотрены в гл. 3. Однако полученная им степенная зависимость разрушающего[194, С.23]

Многие теплоносители, например некоторые жидкие металлы, агрессивны по отношению к конструкционным материалам. Вследствие возможной активации в реакторе продуктов коррозионно-эрозионного разрушения эти материалы не должны содержать элементов, способных образовывать долгоживущие радиоактивные изотопы с высоким уровнем излучения. Применяют, например, хромоникелевые нержавеющие стали, содержащие минимальное количество кобальта (0,01% и менее)1.[39, С.281]

Из предыдущего следует, что значение импульса давления при ударе не зависит от размера капель. Однако время действия этого импульса зависит от диаметра капли, что косвенно влияет на скорость эрозионного разрушения. Чем больше размер капель, тем больше при прочих равных условиях время действия импульса давления, тем ниже порог разрушающих напряжений. С увеличением размера капель увеличивается пятно контакта. Кроме того, с уменьшением размера ! жидких частиц их траектории приближаются к траектории несущей паровой (газовой) фазы; при этом уменьшаются угол падения капель на омываемую поверхность, нормальная составляющая скорости соударения и как следствие -снижается скорость эрозии.[142, С.287]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Тарга, Кепе, Диевского, Мещерского и любого другого на заказ. Быстро, качественно, все виды оплат, СМС-оплата.
Вы так же можете заказать решение задач и по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, метрология, ДМ, ТММ и другие.

СПИСОК ЛИТЕРАТУРЫ

Перейти к перечню использованной литературы

На главную