На главную
ПОМОЩЬ СТУДЕНТАМ!!!
Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и старых методичек 1978, 1982 и 1983гг.. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников или решение задач из задачников Прокофьева, Чертова, Воробьёва и Волькинштейна или любых других решений по физике или гидравлике, воспользуйтесь сайтом fiziks.ru

Статья по теме: Аппроксимирующей передаточной

Область знаний: теплообменники, печи, теплоперенос, паровые котлы, нагревание, горение, топлива, теплообмен

Скачать полный текст

Рис. 7-4. Графики для определения параметров аппроксимирующей передаточной функции цепочки апериодических звеньев с равными (кроме одной) постоянными времени.[123, С.282]

Рис. 7-3. Графики для расчета постоянных времени аппроксимирующей передаточной функции второго порядка.[123, С.281]

В соответствии с равенствами (7-14) коэффициенты &й аппроксимирующей передаточной функции (7-13) находятся путем дифференцирования выражения Р(з), обратного исходной передаточной функции, с последующим приравниванием нулю переменной преобразования 5. В нашем случае[123, С.289]

Пример. Для теплообменника из примера в § 9-2 коэффициенты аппроксимирующей передаточной функции второго порядка, найденные по методу площадей, равны:[123, С.293]

С учетом первого из соотношений (7-19) находятся коэффициенты а^ и Ь4. Первым порядком аппроксимирующей передаточной функции (7-16) целесообразно ограничиться, принимая во внимание вид точной разгонной функции [скачок при т; = 0 на довольно значительную величину (7-28) и близкий к апериодическому характер приближения к стационарному значению].[123, С.299]

В правой части этого равенства легко выделить выражение, которое точно совпадает с /г^. При этом совпадут и коэффициенты Ь\ и Ъг аппроксимирующей передаточной функции (7-13). Окончательно передаточная функция, аппроксимирующая точную функцию №вл ,[123, С.302]

Для аппроксимации динамических характеристик теплоэнергетических объектов по основным каналам передачи возмущений широко используются ЭЦВМ [Л. 99]. При этом очень часто разгонные функции оказываются монотонными, что является благоприятным обстоятельством, упрощающим поиск аппроксимирующей передаточной функции. С достаточной степенью точности приближенную зависимость можно найти среди передаточных функций вида (7-16).[123, С.303]

Канал *,—**. Учитывая равенство нулю в начальный момент времени разгонной функции Н^ и всех ее производных, а также то, что /г% (-оо) = 1, можно использовать аппроксимирующее звено (7-13) с любым п. Однако ввиду слабого влияния изменения температуры рабочего тела на динамику температуры газов (малая величина коэффициента усиления) целесообразно ограничиться невысоким порядком аппроксимирующей передаточной функции. Коэффициенты Ьъ находятся как интегральные отклонения приближенной разгонной характеристики от точной [равенство (7-15)]. 298[123, С.298]

этом отличны от нуля. Таким образом, можно воспользоваться аппроксимирующей передаточной функцией (7-13) только для п=1, а при п>1 необходимо перейти к передаточной функции (7-16). Представляется возможным, учитывая слабую динамическую связь по каналу ОВ1 — Ч)1 (малая величина коэффициента усиления), ограничиться простейшим апериодическим звеном (7-13) при п=1.[123, С.300]

ние т определяется по фазочастотной характеристике объекта. При выборе аппроксимирующей передаточной функции вида (13-81) определение постоянных времени TI, T% можно производить по формуле [48]:[179, С.830]

ние т определяется по фазочастотной характеристике объекта. При выборе аппроксимирующей Передаточной функции вида (13-81) определение' постоянных времени TI, Тг можно производить по формуле [48] :[367, С.830]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь

Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Тарга, Кепе, Диевского, Мещерского и любого другого на заказ. Быстро, качественно, все виды оплат, СМС-оплата.
Вы так же можете заказать решение задач и по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, метрология, ДМ, ТММ и другие.

СПИСОК ЛИТЕРАТУРЫ

Перейти к перечню использованной литературы

На главную